
IJESP Volume 2 Issue 1 December 2021 38

38

English Use in Computer Programming: Analyzing CMC Discourse

Among Computer Programmers

Joshua Leea, Fay Chenb, and Wenli Tsouc*

a & c Department of Foreign Language & Literature, National Cheng Kung University,

Tainan, Taiwan, ROC

b Foreign Language Center, National Cheng Kung University, Tainan, Taiwan, ROC

Biodata

Wenli Tsou is a Full Professor in the Department of Foreign Languages & Literature, and

currently the Director of the Foreign Language Center at National Cheng Kung University,

Taiwan. She received her PhD in Foreign and Second Language Education from the State

University of New York at Buffalo, US. She is the project leader of the National Cheng Kung

University ESP and CLIL programs. Her research interests include teacher training, ESP,

English as a Lingua Franca, Content and Language Interacted Learning and English as a

Medium of Instruction.

Email: wtsou@mail.ncku.edu.tw

Joshua Lee is a third-year Linguistics and TESOL PhD student at National Cheng Kung

University. His main areas of interest are computer-mediated communication, language in

media, and language in advertising.

Email: lee45276@gmail.com

Fay Chen is an Assistant Professor of the Foreign Language Center at National Cheng Kung University,

Taiwan. She received her PhD from the same university. She is a member of the NCKU bilingual

education project team, helping with CLIL teacher training and curriculum design. Her research

IJESP Volume 2 Issue 1 December 2021 39

39

interests include teacher training, ESP, English as a Lingua Franca, Content and Language Interacted

Learning (CLIL) and English as a Medium of Instruction (EMI).

Email: faychen77@gmail.com

Abstract

As computers and software become increasingly ubiquitous, the need for computer

programmers rises. The nature of computer programming allows people from all over the world

to communicate and collaborate on projects together regardless of native language. Much of

this is done in English. Although non-native English speakers have access to English for

Specific Purposes (ESP) materials to help them learn English for information technology, there

are few sources developed specifically for teaching computer programmers the language they

need to work with peers. In order to develop instructional materials that mirror English usage

among programmers, one must first collect real-world discourse and analyze the

communication that takes place. This process involves discovering the vocabulary, grammar,

and other language patterns that are used in a specific environment. This paper analyzes real-

world discourse among computer programmers using Github issues. Online discourse between

computer programmers was found to fall into five main categories with most language

concerned with giving additional information about an issue, giving suggestions about how to

fix an issue, and requesting additional information about an issue. Additionally, relatively little

technical vocabulary was used. We use these findings to develop suggestions and main topics

for an English for Computer Programmers course. We provide Main topics such as Giving

Opinions and Discussing Future Events with can-do statements and examples from the

discourse. These findings can aid lesson planners developing materials for English for

Computer Programming.

Keywords: ESP, CMC, English for computer programming, discourse analysis, Github

IJESP Volume 2 Issue 1 December 2021 40

40

Introduction

Computer programming is becoming an increasingly popular skill in many countries. The

United States Bureau of Labor Statistics alone states that the increase in software developer

positions is “much faster than average” compared to other jobs (Occupational Outlook

Handbook - Software Developers, 2018). Software developer is just one job that uses computer

programming. Because English has become the dominant language in science, academia, and

business, it makes sense to study how English is used in the context of computer programming

(Swales, 2000). The focus of this paper is to examine how computer programmers

communicate using computer mediated communication (CMC) and how the findings can be

used to assist educators that are teaching English for Specific Purposes (ESP) to non-native

English speakers.

The Importance of ESP

Traditional English language learning in the classroom is often concerned with General English.

While this type of English learning may be beneficial for using English for day-to-day tasks,

the language used in General English may not be adequate for performing tasks in work

environments (San & Suan Choo, 2017; Lee, 2016). Trace, Hudson, and Brown (2015) state

that “Language for specific purposes (LSP) courses are those in which the methodology, the

content, the objects, the materials, the teaching, and the assessment practices all stem from

specific, target language uses based on an identified set of specialized needs” (p. 2). Complaints

from students and employers about graduates not being able to communicate in English have

led to ESP programs which aim to better equip students with the specific English skills that

they will need in their careers (Rackeviciene, Janulevičienė, & Mockiene, 2019; Al-Tamimi &

Lin, 2010). Studies like these show researchers that knowing General English is not enough for

many learners. Instead, many English as a Second Language (ESL) and English as a Foreign

Language (EFL) learners require additional English training in the form of ESP courses.

Previous studies have looked at English for Specific Purposes in the context of computer

programmers (Mykytenko, Rozhak, & Semeriak, 2019; Danielle, 2015); however, these studies

have not looked at authentic English language used by programmers in a CMC environment.

We believe that this type of discourse should be examined as written CMC is common among

computer programmers.

English in Computer Programming

IJESP Volume 2 Issue 1 December 2021 41

41

English has become the predominant language used when discussing science and technology.

Academics and educators have used the terms Scientific English or English for Science and

Technology (EST) to describe the language used in these fields (Tarantino, 1991). Like other

ESP contexts, English use in science and technology is often much more context specific than

EGP. Tarantino states that “common sense” words often used in EGP such as far, heavy, cold

and hot have much more specific meanings in ESP settings. Therefore, it is important for a

learner to recognize how these words are used in ESP settings compared to EGP settings.

To make matters even more difficult for ESL and EFL learners, much of computer

programming relies on using English words to write code and markup. English usage in

computer programming can be broken up into two types: computer-read English and human-

read English.

Many computer-read languages’ syntax have reserved English words that must be used for the

computer to understand commands. Reserved words are different across programming

languages, but common words are if, while, for, switch, break, continue, next, using, class and

initialize. While there are some programming languages that use non-English syntax, Latino

and Ezhil for example, most popular programming languages use English syntax. In December

2018, TIOBE, a software company that does market research concerning the software industry,

reported the twenty most popular programming languages based on current usage data. All

twenty of these languages’ syntax use English words (TIOBE Index for December 2018, 2018).

Additionally, there are organizations that decide which technologies are to be used in different

computer programming environments. The World Wide Web Consortium (W3C) sets web

standards for how HTML and CSS, two languages used in web development, are used to build

websites (W3C Standards, 2018). Both of these languages rely heavily on English keywords.

For example, HTML contains English keywords head, body, aside, and main while CSS

contains keywords such as background-color, text-decoration, and font-family.

Human-read English is English that is meant for the programmer writing the code or other

programmers that wish to collaborate with the original author. Computers generally do not

understand human-read code. In computer programming, variables are containers for

information and stored by naming them. For example, if a programmer was writing software

for a banking application, he or she could use a variable like so:

currentBalance = 1000;

IJESP Volume 2 Issue 1 December 2021 42

42

An additional way that human-read English can be used in computer programming is

commenting code. Comments are notes that a programmer writes in his or her code to

remember things or to help other programmers that are reading the code. One example is:

checkCurrentUserAccountBalance(); // this function checks the current

balance and returns it

This type of English, compared to computer-read English, requires a higher level of English

proficiency as it requires both productive and receptive uses of English and requires the user

to be able to express complex ideas that will have to be understood by another human.

English to Be Learned in ESP

Previous research has been conducted examining the language used in Information Technology

(IT) roles (Balaei & Ahour, 2018; Synekop, 2018); however, research like this does not provide

specific language that is used in real-world examples, something that should be used if the goal

of a class is to teach authentic language. Current texts exist that focus on teaching English for

Information Technology (Evans, Dooley & Wright, 2012; NCKU ESP Program, 2011) do

contain language points that can be used to create lesson objectives in an ESP course; however,

texts like these are much more wide-angled, focusing on English used in information

technology as a whole instead of specific language used by computer programmers. Relativity

few texts exist that specifically focus on teaching computer programmers.

Although knowledge of grammar and vocabulary are important when communicating in an

ESP environment, other factors are equally important. In a study examining EFL customer

service representatives in the Philippines, Forey and Lockwood (2007) note that “it appears

that communication failure has less to do with the traditional notions of poor language skills,

i.e. poor grammatical knowledge and poor pronunciation and more to do with poor interactional

discourse skills and cultural appreciation” (p. 323). In order to promote communicative

competency in addition to purely linguistic competency, discourse skills are taught in some

English classes; however, sometimes, specifically for English used in workplace environments,

the discourse that is taught does not parallel language that would actually be used in a real-

world situation (Bremmer, 2010). That is, even when studying ESP discourse in the classroom,

there is still a gap between what is taught in the classroom and what is used in the workplace

(Bremmer, 2010). For example, Bremmer (2010) states that discourse found in ESP textbooks

often involves idealized work environments and situations in which equity is equal among all

IJESP Volume 2 Issue 1 December 2021 43

43

participants, two situations which are not common in actual work environments. In order to

close this gap between the two environments, we propose using discourse from real-world

examples to create the target language for an English for Computer Programmers curriculum.

Research Questions

The research questions that this paper intends to answer are (1) What English do computer

programmers use to communicate online and (2) what language skill training should an ESP

course for computer programmers provide? We hope the findings of the study provide

educators with authentic language that can be used in course design.

Method

Materials

In order to gather discourse to analyze, we needed to find a suitable dataset that included

communication between programmers. A similar method has been used before to help develop

ESP writing (Zhang & Hu, 2010). Additionally, we wanted to provide specific examples in our

data. As such, we looked for a source of discourse that could be easily accessed and shared

without worrying about using public information. We chose to gather data from Github. It

should be noted that we only chose Github because accessing this data was convenient. Github

(github.com) is a well-known website that allows programmers to store code and collaborate

with other users. Over 31 million developers and over 2.1 million organizations worldwide use

Github. Additionally, the largest number of contributors on Github come from outside America

(The State of the Octoverse, 2019). While there has been previous research about

communication between computer programmers, little research has been done to examine the

kind of English used on Github. If the purpose of teaching ESP is to teach the learner how

language is used in the target environment, examining Github communication is the best way

to accomplish it.

The two main methods of communicating on Github are pull requests and issues. Pull requests

are focused on the development of new code or features of a project while issues are typically

focused on bugs that occur in the already written code. The focus of this paper will focus on

the latter, communication concerning fixing bugs, for the following reasons. The discourse in

pull requests is often short, containing just one comment from a single person. If pull requests

were to be analyzed, there would be fewer chances to view how commenters communicate

IJESP Volume 2 Issue 1 December 2021 44

44

with each other in longer discourses. In addition, the discourse in pull requests is much more

technical than discourse in issues. In order to understand the discourse in pull requests, a coder

would have to be familiar with the project. Although, familiarity with a specific project is

helpful when viewing discourse contained in issues, many of the problems in the issues

category are much more general. The problems in issues may be technically related, but

programmers without an in-depth knowledge of the specific project would still be able to

understand the text. Finally, issues provide a narrower analysis than analyzing pull requests.

In order to get a variety of discourse, we chose one thread from ten different projects from the

“trending of the month” projects during April 2019. All of the threads were closed threads

which means no more comments would be added. Additionally, all of the projects that we chose

had their descriptions written in English. Finally, all threads were about projects that used the

Ruby programming language. Different programming languages will largely have the same

content, but we are familiar with the Ruby programming language, so we chose this language.

Each comment in the selected threads belonged to one author; however, one author could write

multiple comments. A total of 67 authors were gathered from the set of comments. Each user

on Github has the option to list his or her location. Unique locations and the number of

participants in those locations are as follows: Not listed: 19, USA: 17, Germany: 6, Canada: 3,

France: 3, Scotland: 3, Australia: 2, Japan: 2, UK: 2, Indonesia: 1, England: 1, Finland: 1,

Lithuania: 1, Norway: 1, Philippines: 1, Poland: 1, Switzerland: 1, Thailand: 1. It should be

noted that these locations are not indicative of a user’s native language.

IJESP Volume 2 Issue 1 December 2021 45

45

Procedures

Shanthi, Wah, and Laijum (2015) state what when coding and categorizing discourse data, the

researcher can approach the text in two different ways: (1) approaching the data without pre-

created categorizes and allowing categorizes to emerge from the discourse or (2) approaching

the data with a list of coding categories, allowing the researcher to place the discourse into each

category as he or she sees fit. The first method will be used in this paper to allow the researcher

to approach the data without any preconceived ideas of what kinds of moves the text contains.

We read over all of the comments in the project threads and broke them up into different

discourse units. For example, a single comment or a single sentence can include requesting

information as well as giving an opinion about a solution. We broke up comments like this into

multiple discourse units where each unit constituted one action.

After breaking up the text into discourse units, we read through the data to discover various

contexts, moves, and steps. After looking over about half of the data there became a point when

no new discourse types emerged. At this point, we gave contexts, moves, and steps definitions.

Two of us used these definitions to separately tag half of the data in order to get a more reliable

perspective about which discourse units fell into which categories. We agreed 89% percent of

the time out of 197 discourse units. After establishing a suitable inter-rater reliability, one

researcher coded the remaining data on his own.

Results

The ten threads included in the discourse contained 398 discourse units. The discourse analyzed

in the data fell into five different general contexts, each having their own moves and steps.

Some moves were simple and included just one step, while other moves were more complex

and included multiple steps. Although these moves and steps are presented in an order, many

times users did not follow a particular order. The types of moves and steps that were found in

the discourse and the number of times they appeared in the data can be seen in Table 1. As

indicated in Table 1, the discourse found in the text fell into five main contexts: (1) seeking

help, (2) a user responds to a question or request, (3) the problem-posted user responds to a

question or suggestion, (4) users discuss future fixes, (5) and forum management. Each of these

contexts is further discussed below.

Table 1: Moves and Steps

IJESP Volume 2 Issue 1 December 2021 46

46

Discourse type Number of

occurrences

Example

Context 1: Seeking Help - -

Move 1: Provide background

information

- -

 Step 1: Describe the problem 14 “I’m writing a new

admin/scanner/ftp module.”

 Step 2: State previous steps taken

that caused the problem

9 “This is true of any {CODE}

parameters I’ve tried

{CODE}

 Step 3: List previous outcome 19 “Whenever I run exploit on

my other ftp_traversal

modules: {CODE}”

 Step 4: Provide additional

information

20 “This is with my git updated

repo (as of today) as well as

my kali apt-get pulled

version.”

Move 2: List steps taken to fix the

problem

5 “Accordingly I installed

Jekyll-paginate gem…”

Move 3: Ask for suggestions, help,

opinions or more information

8 “Please could someone help

me with this issue?”

Context 2: A User Responds to a

Question or Request

- -

Move 1: Ask for additional

information

21 “Did you copy any code?”

Move 2: Discuss similar experience - -

 Step 1: State previous experience 11 “I’ve run into the very same

issue this morning.”

 Step 2: Provide background

information

7 “When I received my

verification email I got his

error when I click the

confirmation link.”

 Step 3: Can’t replicate issue 2 “No wonder I couldn’t

duplicate.”

Move 3: Respond to a question or

give information about the problem

28 “{CODE} hasn’t been

complete fixed yet.”

IJESP Volume 2 Issue 1 December 2021 47

47

Move 4: Give suggestion or solution - -

 Step 1: Give instructions 34 “In the meantime you should

manually add the staging

directory via the Alfred GUI.”

 Step 2: Discuss suggestion or

solution or give information about

the suggestion or solution

15 “The syncfolder is only ever

set if the user has set a sync

folder, which may be never. If

a syncfolder has never been

set (or the user is a non

Powerpack user), you can just

assume {CODE} will be

located in

/Library/Application

Support/Alfred 2/”

Move 5: Refer user to another thread

or to other comments

13 “FWIW, I had a {LINK}

suggesting Alfred find

symlinked apps in their

search scope which naturally

includes /Applications by

default.”

Context 3: Person with a Problem

Responds to Question or

Suggestion

- -

Move 1: Show appreciation 12 “Thank you for stopping by.”

Move 2: Clarify or confirm

understanding

8 “but should one plugin failure

make whole server down?”

Move 3: Give opinion about

suggestions or solution

9 “I don’t buy that Arel is a

private API for Rails, given

that Arel objects are

documented as part of the

public ActiveRecord API.”

Move 4: Report outcome - -

 Step 1: List steps taken to fix the

problem

18 “I added this code snippet on

my_config.yml”

 Step 2: Report positive outcome 10 “I just fix it.”

 Step 3: Report negative outcome 21 “It doesn’t work.”

 Step 4: Further discussion of

solution

7 “It only suppresses specific

messages.”

IJESP Volume 2 Issue 1 December 2021 48

48

Move 5: Respond to a question 17 “i did, but it was from the

bison_ftp_traversal module.”

Move 6: Give additional information

about the problem

15 “also, seems my wifi driver

crashes whenever i wireshark

or tcpdump…”

Context 4: Discuss Future Fix - -

Move 1: State intent to fix in the

future

9 “I’ll just add these two folders

to Alfred’s default search

scope in 2.6.”

Move 2: Propose a new fix or

solution

16 “To improve the UX a little, I

suggest that we…”

Move 3: State a new fix has been

created

2 “I’ve now added these folders

into Alfred’s 2.6 default

search scope.”

Move 4: Give opinion about a fix or

suggested idea for fix

40 “I’ll reiterate, however, that

just including their default

directories in Alfred’s results

by default might be the best

solution for the amount of

work it requires.”

Context 5: Forum Management

Move 1: Thread status 4 “Anyone still encountering

this should open a new issue.”

Move 2: Close conversation 3 “Feel free to close and create

another issue if you want.”

Move 3: Forum rules and etiquette 1 “Please be nice.”

Context 1: Seeking Help

The first context in the discourse is concerned with a user that has a problem. All threads start

with this kind of discourse and other users that have the same problem may enter the thread

after the conversation has started. Each move and step is discussed below.

Move 1: Provide background information

In this move, the user provides the forum with information about his or her problem.

Step 1: Describe the problem

IJESP Volume 2 Issue 1 December 2021 49

49

Here, the user describes the task that he or she was doing while the problem occurred. Text

found in this discourse type include “After untapping the emacs tap, but still having…” and

“I’m writing a new admin/scanner/ftp module…”

Step 2: State previous steps taken that caused the problem

This step includes the user stating what specific steps he or she did to cause the problem.

Sometimes these steps are listed as bullet points and as incomplete sentences, while other times

the steps are written out in complete sentences. Text found in this discourse type include “I

installed (software package)...”

Step 3: List previous outcome

This step involves the user stating what the problem or error is. Many times, this step is

accompanied by a block of code or a screenshot. Text found in this discourse type include

“Whenever I run exploit on my or other ftp_traversal modules: (screenshot)”

Step 4: Provide additional information

In this step, the user with the problem provides any additional background information about

the problem including hardware or software configurations. Text found in this discourse type

include “Here are my alfred preferences (block of code)”.

Move 2: List teps taken to try and fix to problem

This move involves stating the steps taken to attempt to fix the problem. Sometimes, the steps

are listed out in bullet points and not in complete sentences. Text found in this discourse type

include “I installed jekyll-paginate gem…”

Move 3: Ask for suggestions, help, opinions, or more information.

This move involves the user with the problem explicitly asking for assistance. Text found in

this discourse type include “Please could someone help me with this issue?”

Context 2: A User Responds to a Question or Request

The second context that was found in the data was when a user was responding to another user

that had a problem. Each move and step is discussed below.

IJESP Volume 2 Issue 1 December 2021 50

50

Move 1: Ask for additional information

Here, the person is requesting additional information about the problem in order to help. The

question can ask about previous actions the other user took, or the question could be about what

configuration the other user has. Text found in this discourse type include “Did you copy and

code,” and “what version are you using?”

Move 2: Discuss similar experience

The user that is trying to help previously had the same problem or an issue similar to the

problem the original user currently has, but the user in this move no longer has the problem.

Step 1: State previous experience

The user states that they previously had the same or similar problem. Text found in this

discourse type include “I was doing something similar.”

Step 2: Provide background information

The user gives additional information about his or her previous experience. Text found in this

discourse type include “When I received my verification email I got this error when I clicked

the confirmation link.”

Step 3: Can’t replicate issue

This user does not currently have the problem, but he or she is trying to cause the same or

similar problem for debugging purposes. Text found in this discourse include “Strange, I can’t

repo.”

Move 3: Respond to a question or give information about the problem

Here, the user responds to a question or gives information about the problem. Text found in

this discourse type include “... are not documented anymore. They were there by mistake.”

Move 4: Give suggestion or solution

In this move, a user is helping another user that has a problem by giving that person specific

suggestions or solutions that can alleviate the issue.

IJESP Volume 2 Issue 1 December 2021 51

51

Step 1: Give instructions

The user gives specific instructions about how to fix the problem. Text found in this discourse

type include “add to your gem file {CODE}” and “You can do this instead {CODE}.”

Step 2: Discuss suggestion or solution or give information about the

suggestion or solution

Many times, after giving a solution to a problem, a user will give additional information about

the solution. This information is usually about why the proposed solution works or an opinion

about the solution. Text found in this discourse type include “I’ve found the ‘real’ bug, but that

workaround is ‘good enough’ for now :)” and “{CODE} are not documented anymore. They

were there by mistake {CODE} is also private API.”

Move 5: Refer user to another thread or to other comments

In this move, a user recommends that the user with the problem goes to another webpage on

Github or outside of Github in order to help with the problem. Text found in this discourse type

include “Did you follow instructions on {LINK}” and “This might help you {LINK}.”

Context 3: Person with a Problem Responds to Question or Suggestion

This context involves the user with the problem, however, at this point the problem has already

been stated and suggestions have been given or questions have been asked. In this context, the

person with the issue is responding to others. Each move and step is discussed below.

Move 1: Show appreciation

The user thanks another user for their suggestion or just for trying to help them. Text found in

this discourse type include “Thanks for helping me” and “Cheers.”

Move 2: Clarify or confirm understanding

The user has received a suggestion or question and he or she is trying to clarify or confirm his

or her understanding. Text found in this discourse include “Are you saying that I need to…”

and “How do I do that?”

Move 3: Give opinion about the suggestion or problem

IJESP Volume 2 Issue 1 December 2021 52

52

The user has received a suggestion or solution for his or her problem and he or she is giving

their opinion about it. Usually, this occurs before a user has tried the solution. Text found in

this discourse include “I don’t think that will fix my problem.”

Move 4: Report outcome

The user has been given a suggested solution and the user has tried it. Here, the user gives

information about his or her attempt to fix the problem.

Step 1: List steps taken to fix the problem

The user lists the steps that he or she did to address the problem. Text found in this discourse

include “I did…,” I tried,” and “Doing….”

Step 2: Report positive outcome

The user has tried a solution that has fixed the problem. Text found in this discourse include

“Fixed!” and “It works now.”

Step 3: Report negative outcome

The user has tried a solution, but the solution did not fix his or her problem. Text found in this

discourse include “Still getting the error” and “that didn’t fix my problem.”

Step 4: Further discussion of solution

The user has tried a solution and wants to further discuss the fix. This can occur if the solution

fixes the issue or if it doesn’t. Text found in this discourse include “This should be fixed with

the main code.”

Move 5: Respond to a question

The user is asked a question and he or she responds. Text found in this discourse include “I am

using Windows 10.”

Move 6: Give additional information about the problem

The user gives additional information about the problem, but this is not a response to a question.

Text found in this discourse include “By the way, I’ve tried doing this on Chrome and Firefox.”

IJESP Volume 2 Issue 1 December 2021 53

53

Context 4: Discuss Future Fix

Some of the problems that appear in the discourse are due to the actual software package itself,

not because of a user error. As such, a solution to the problem must be implemented by the

project maintainers. Each move and step is discussed below.

Move 1: State intent to fix in the future

A project maintainer, or someone else that is able to modify the project’s code, states that he

or she will fix the issue in the future. Text found in this discourse include “I’ll probably revert

the fixed width this week.”

Move 2: Propose a new fix or solution

Someone proposes a new fix to the solution. This is not giving advice to the specific user that

has the current problem, instead this is a proposal to fix the core code that will fix all similar

problems. Text found in this discourse include “Maybe there should be…” and “How about we

add…”

Move 3: State a new fix has been created

A modification to the project’s code has been made that should fix the user’s problem. Text

found in this discourse include “There’s a new fix” and “This has been fixed with the new

update.”

Move 4: Give opinion about the fix or a suggested idea

A fix has been suggested or implemented and this user is giving his or her opinion about it.

Text found in this discourse include “The fix works great” and “I don’t think that will be a

great idea.”

Context 5: Forum Management

At some points in the threads, comments about the thread itself were given. Each move and

step is discussed below.

Move 1: Tread status

IJESP Volume 2 Issue 1 December 2021 54

54

A user asks or gives information about the status of the thread. The user can also make a

suggestion about the status of the thread. Text found in this discourse include “What is the

status of this.”

Move 2: Close conversation

A user closes the conversation. When this move appears, it is always the last comment of the

thread, but this move doesn’t occur in every thread. Additionally, many times a bot

automatically closed the thread after it was inactive for a period of time. Text found in this

discourse include “Closing this as it is resolved as it will be.”

Move 3: Forum rules and etiquette

A user suggests how to communicate on the thread. Text found in this discourse include “Please

be nice.”

In addition to the various contexts we discovered in this discourse, we found multiple sentence

and grammatical patterns that frequently occurred. One pattern was using certain language to

sound more colloquial. Many users used speech mannerisms such as “Ah yes” and “Ugh.”

Additionally, many users also dropped the subject of a sentence such as “(I) sounder if there’s

a way…,” “(I) Don’t think there is…,” “(It) looks like all of the {CODE} have the same issue,”

and “ (This is a) very helpful analysis on the bug.” Another pattern that we commonly found

was language used to give opinions and suggestions. Language used to give opinions and

suggestions included “I suggest that we…,” “I think was should…,” and “Somebody could

do…”

Discussion

In this section, we address each research question using data obtained from the discourse

analysis.

English Used by Computer Programmers Online

Frequency used

As indicated in the result section, computer mediated discourse between computer

programmers typically falls into five different contexts: seeking help, responding, problem-

posted user responding, future fixes and forum management. Context 2, responding, was the

IJESP Volume 2 Issue 1 December 2021 55

55

most common with 32% of all discourse units followed by Context 3, problem-posted user

responding, with 30%, Context 1, seeking help, with 19%, Context 4, future fixes, with 17%,

and Context 5, forum management, with 2%.

The most common types of discourse found in the data involved asking and answering

questions: Context 2 and Context 3. Over half of the discourse gathered included different

members of each thread asking questions, answering questions, and discussing the answers to

those questions. Context 3 was the second most used context and contained reporting what

happened after trying a solution. Much of the language that was used in this context involved

simple past tense. Additionally, language relating to attempts such as the word tried was

frequently used.

The more frequent use of Context 2 & 3 isn’t surprising since Github issues are about opening

threads to request help from the community. Surprisingly, however, Context 4 about suggested

fixes to the software packages themselves was also a common occurrence. Comments about

future suggestions include asking opinions about hypothetical future fixes and discussing

future plans, while comments about the current issue at hand focus more on past actions and

current problems. Here, we see that verbs tenses are usually different depending on if the

subject is the current issue or if the subject is the current software package.

The third most common context was Context 1. This context included describing a problem

and giving background information about a user’s hardware and software settings. Vocabulary

such as operating system, updating, and running (as in “I am running Windows 10”) were used

in this context. Each thread included moves from Context 1 and these moves were almost

always the first text in each thread. This is most likely due to the fact that when creating a new

issue, users are often prompted how to format their first message.

Context 4 was the fourth most used context. This discourse involved discussing future fixes to

the software package being used, not discussing a current fix that the user with the problem

can use. Some knowledge of computer programming or familiarity with the project may be

needed to tell the different between Context 4 from other contexts discussing the current

problem.

The “Forum management” context, while significant enough to warrant its own categorical

context, was used the least. One reason may be from the use of bots. Some projects on Github

include bots that automatically close threads or perform other actions related to the status of

IJESP Volume 2 Issue 1 December 2021 56

56

the thread. Additionally, instead of a participant performing a speech act to close a thread, the

participant could manually close the thread through certain options without requiring any

additional text. That is, forum management was often done by administrative actions, not

through actual discourse.

IJESP Volume 2 Issue 1 December 2021 57

57

Word Choices

Examining the discourse closely, we can observe the specific language and word choices used.

For example, we found ellipsis to be used frequently in the data. The two main types of ellipsis

found in the data were: deletion of self-referential pronouns and deleting of determiners. Some

examples of deleting pronouns referring to the author of the comment include “Been there, you

just need to add…” and “Forgot to mention…” Examples of deleting determiners include

“Alternatively, add to your Gemfile…” and “I have strange issue…” Because it is impossible

to determine what the participants’ native languages are, it is not possible to tell if these are

errors or stylistic choices from the authors. That said, some of the examples of ellipsis read as

if they were used to sound more friendly and casual while others seemed like overt errors.

When explaining a problem, users used causal language to explain things such as the word

because. When giving solutions users used language such as conditional sentences using

“If…then…” phrases. Casual language was often seen in all contexts except for Context 5.

Additionally, users used many modal verbs such as should, can, and might to talk about the

possibility of a solution working.

An additional observation we found while looking at the data is the usage of words such as

“ah,” “hmm,” and “uh.” It seems like these, with the previously mentioned ellipses, are used

to make comments in the threads mimic speech typically used in face-to-face interactions.

Although there were almost 400 discourse units found in the data, programming-specific

vocabulary was not as common as expected. Threads for each project included specific

vocabulary related to each project; however, there was common vocabulary among the threads

including the following: operating system, updating, install, module, query, paginate, log. With

the exception of these words and project specific vocabulary, the range of programming-

specific vocabulary was limited.

Languages Skills an ESP Course for Computer Programmers Should Provide

The above findings can help ESP teachers design at least the following three language skills to

help their students: can-do statements, learning for low-frequency words, and grammatical

structures. Can-do statements are often used in English language teaching to assess a learner’s

abilities in regard to the target language (Denies & Janssen, 2016). Often, English language

textbooks will include can-do statements and objective for each section or unit of the course.

IJESP Volume 2 Issue 1 December 2021 58

58

These can-do statements are used in order to guide teachers with the content and activities they

use in the classroom. The “can-do statements” we developed based on the findings of the study

can be found in Table 2. This table contains main topics, expected learning outcomes, and real

discourse for teachers to use in lesson planning. For example, a section about giving opinions

would have can-do statements such as “the student will learn to use and understand sentences

with I think/believe/suggest structures.” An ESP teacher can use information in this table to

develop role-plays and other suitable activities to teach the target language. The first row in

Table 2 is titled “Giving opinions.” This topic can be the theme of a role-play, unit, or single

class depending on the students’ needs. Specific goals and target language are also provided in

order to guide the ESP teacher. Finally, authentic language from the discourse is also provided

to give an example of how the target language is used between computer programmers. The

multiple rows in the table can be used together to plan a complete English for Computer

Programmers course.

Table 2: Can-Do Statements

Items Explanation/Expected

Learning Outcomes

Examples from Data

Give opinion about fix or suggested idea for fix

Giving opinions Students learn to use the

sentence structure that begins

with I think/believe/suggest…

“I feel that {SUGGESTION}. Is

gonna have to wait a few years

until it is worth the effort.”

“That would be the easy solution

Discuss future events Students learn to use the

sentence structure that begins

with the recommended action.

Students learn to use the future

tense.

“Yes, adding to the error

message that non-paid users can

manually add {CODE} to the

searched folders will help.”

Use multiple verb

tenses together

sentence

Students learn to describe a past

and a future action in one

sentence.

“I’ve now added these folders

into {SOFTWARE} default

search scope. {SOFTWARE}

should be out in a few weeks or

so…”

Use conditionals Students learn that the

conditional sentence is also

used when an opinion or

recommendation is given.

“If we decided we need this,

here’s what I’d do: {CODE}”

Give instructions

Giving instructions

in a sequence

Students learn to give

instructions in a specific order.

“If you’re using {SOFTWARE},

shell into the container

IJESP Volume 2 Issue 1 December 2021 59

59

first…then get into

postgres…Then try to select

your user…”

Using sequence

words

Students learn to use words to

describe the order in which

something happens.

“After untapping the emacs tap,

but still having {CODE}

installed. {CODE} fails with

{CODE}.”

Giving commands Students learn to give

commands.

“Add these to the scope.” “Then

try again please.”

Respond to a question or give information about the problem

Thanking someone

for helping

Students learn to thank another

user.

“Thanks {USER} for

researching and documenting

this.”

“Cool, thanks for the info!”

Replying to

questions

Students learn to reply to

previously asked questions.

“I did, but it was from the

{CODE} module.”

“That is correct.”

Using conditionals Students learn to use

conditional language.

“Ah yes, the preference doesn’t

exist until I choose a sync

folder.”

Ask for additional information

Asking questions Students learn to ask questions. “Is there a way we can make

linking work with the free

version of {SOFTWARE}?”

Reporting outcomes

Reporting previous

steps taken

Students learn to use signal

language to report previous

steps taken.

“After fixing the typo in your

SQL statement it looks like…”

Reporting outcomes Students learn to report positive

and negative outcomes of trying

a proposed solution.

“Now running {CODE} works!”

“And attempting to uninstall

{CODE} itself.”

“Strange, I can’t repro.”

“I’m no longer getting this issue,

thanks!”

Discussing previous

attempts

Students learn to use language

to describe past or habitual

actions.

“Seems my wifi driver crashes

whenever i wireshark or

tcpdump.”

Using past tense Students learn to use simple

past tense to describe

completed actions.

“I’ve updated this issue…”

“I didn’t read the above

discussion properly.”

Provide additional information

IJESP Volume 2 Issue 1 December 2021 60

60

Giving detailed

information about a

problem so someone

can help

Students learn to use and

understand complex sentences

with embedded clauses.

“Running Rails in a separate

window causes foreman to get

killed, so I can’t test this live

although taking those steps in

Rails seems to be successful.

Thanking a user for

helping

Students learn to use language

to express gratitude.

“Thank you for stopping by,

{USER}.”

Secondly, an ESP design can include reading strategies for obtaining the meaning of low-

frequency words (Masrai, 2019). The discourse in the text included programming-specific

vocabulary, but besides project-specific words, computer programming vocabulary was

somewhat limited. Each project contained vocabulary that was specific to the programming

language or software package that was being discussed. Therefore, it would be impossible for

an ESP teacher to teach vocabulary for every programming language and every software

package as the number of new languages and software packages increases each day. Instead,

an ESP teacher can teach students reading strategies, such as context clues, to help students

when they come across new words (Khabiri & Pakzad, 2012).

Finally, ESP teachers can help programming students by providing common grammar points

that are used in CMC discourse. The discourse often included language that mimics spoken

language using words like ah and ugh. Grammatical structures using I think and I suggest that

were common in situations that involved talking about suggestions or opinions. Additionally,

the omission of subjects such as the personal pronoun I and empty subjects like it and there

was common. Students should be familiar with these grammatical structures as they occurred

frequently in the dataset. It may be beneficial for ESP teachers to make their students aware of

the differences between English used inside the professional circle of the programmers and

general English outside of the profession.

This research does contain a few limitations. First, the programming language used in the

discourse, Ruby, is most commonly used for web development. Although much of the language

in web development will transfer over to other forms of programming, some fields such as

game development and mobile development will have domain specific vocabulary and

discourse. These subdomains also include language related to computer hardware as well as

physics. That is, while this research is narrowly focused in terms of ESP, future research can

be even narrower, focusing on subfields of computer programming. Second, all of the discourse

was hand-coded by the researchers. This led to inherent time limitations. Some of the findings,

IJESP Volume 2 Issue 1 December 2021 61

61

such as lexical items that were used in the discourse, may be expanded on by writing scripts to

pull out all of the comments’ text, checking which lexical items are used, and comparing these

items to a commonly used word lists to determine which vocabulary items would be beneficial

to cover in an English for Computer Programmers course.

Conclusion

In this study, we examined English use in computer programing. Current educational materials

for ESL and EFL learners regarding English use in programming is lacking, therefore current

English usage among computer programmers was analyzed in order to examine communication

patterns and techniques. After analyzing how computer programmers communicate with each

other, we used the information to create suggestions for planning an English for Computer

Programmers course.

We found five main categories in the CMC discourse: seeking help, responding to questions or

requests, a user with a problem responds to a question or suggestion, discussing future fixes,

and forum management. The most common context was responding to questions or requests.

Each of these contexts includes multiple moves and steps such as describing processes and

outcomes, providing background information on a specific problem, and proposing new fixes.

Although computer programming is a technical field, only a small amount of the discourse

included domain-specific vocabulary. Language usage included using words such as ah and

ugh in order to closely mimic spoken language occurred frequently. Additionally, the dropping

of the subject such as expletive pronouns it and there as well as the subject I when the subject

is assumed to be understood was common.

These findings can help develop topics and can-do statements that will aid lesson planners

when developing ESP material for English for Computer Programming courses. These

suggestions, along with the findings of how language is used in real-world examples, fill a gap

in current ESP research and can provide fruitful sources for ESP designs.

IJESP Volume 2 Issue 1 December 2021 62

62

Acknowledgements

The authors would like to thank the participants of the study, the financial support from the

Ministry of Science and Technology of Taiwan.

IJESP Volume 2 Issue 1 December 2021 63

63

References

Al-Tamimi, A., & Lin, S. (2010). Investigating the English Language Needs of Petroleum

Engineering Students at Hadhramout University of Science and Technology. The

Asian ESP Journal, 6(1), 6-34.

Balaei, P., & Ahour, T. (2018). Information Technology Students’ Language Needs for their

ESP Course. International Journal of Applied Linguistics and English

Literature, 7(2), 197. doi:10.7575/aiac.ijalel.v.7n.2p.197

Bremner, S. (2010). Collaborative writing: Bridging the gap between the textbook and the

workplace. English for Specific Purposes, 29(2), 121-132.

doi:10.1016/j.esp.2009.11.001

Danielle, Joulia (2015). Facteurs d’échec et de réussite en anglais de spécialité: le cas de

l’anglais pour l’informatiqueContributing factors to failure and success in English for

Specific Purposes: The case of English for IT, Recherche et pratiques pédagogiques

en langues de spécialité - Cahiers de l APLIUT, 10.4000/apliut.5239, Vol. XXXIV N°

2

Denies, K., & Janssen, R. (2016). Country and Gender Differences in the Functioning of

CEFR-Based Can-Do Statements as a Tool for Self-Assessing English Proficiency.

Language Assessment Quarterly, 13(3), 251-276.

doi:10.1080/15434303.2016.1212055

Ellis, R. (1996). SLA and language pedagogy. Studies in Second Language Acquisition, 19,

69-92.

Evans, V., Dooley, J., & Wright, S. (2012). Career Paths: Information technology. Newbury:

Express.

Forey, G., & Lockwood, J. (2007). “I’d love to put someone in jail for this”: An initial

investigation of English in the business processing outsourcing (BPO) industry.

English for Specific Purposes, 26(3), 308-326. doi: 10.1016/j.esp.2006.09.005

IJESP Volume 2 Issue 1 December 2021 64

64

Khabiri, M., & Pakzad, M. (2012). The Effect of Teaching Critical Reading Strategies on

EFL Learners' Vocabulary Retention. The Journal of Teaching Language Skills

(JTLS), 4(1), 74-106. Retrieved August 17, 2020, from http://jtls.shirazu.ac.ir/

Lee, C. L. (2016). Principles and Practices of ESP Course Design - A Case Study of a

University of Science and Technology. International Journal of Learning, Teaching

and Educational Research, 15(2), 94-105

Masrai, A. (2019). Vocabulary and Reading Comprehension Revisited: Evidence for High-,

Mid-, and Low-Frequency Vocabulary Knowledge. SAGE Open, 9(2),

215824401984518. doi:10.1177/2158244019845182

Mykytenko, N., Rozhak, N., & Semeriak, I. (2019). Teaching Communication Strategies to

The Computer Programming Students. Advanced Education, 6(12), 49-54.

doi:10.20535/2410-8286.167148

NCKU ESP Program. (2011). ESP: English for information technology. Taipei, Taiwan:

Bookman Books.

Rackeviciene, S., Janulevičienė, V., & Mockiene, L. (2019). English for Specific Purposes

and The Second Foreign Language: Reaching Beyond Language Training in Ba

Philology Study Programme. Journal of Teaching English for Specific and Academic

Purposes, 135. doi:10.22190/jtesap1902135r

San, N. Y., & Suan Choo, J. C. (2017). Needs Analysis of English for Technicians: A Case

Study. Langlit.

Shanthi, A., Wah, L. K., & Laijum, D. (2015). Discourse Analysis as a Qualitative Approach

to Study Information Sharing Practice in Malaysian Board Forums. International

Journal on E-Learning Practices (IJELP), 2. Retrieved 2015.

Swales, J. M. (2000). Languages for specific purposes. Annual Review of Applied Linguistics,

20, 59–76.

Synekop, O. (2018). Cognitive Aspect of Learning Style in Differentiated ESP Instruction for

The Future It Specialists. Advanced Education, 5(10), 40-47. doi:10.20535/2410-

8286.151271

IJESP Volume 2 Issue 1 December 2021 65

65

Tarantino, M. (1991). English for science and technology: A quest for legitimacy. English for

Specific Purposes, 10(1), 47-60. doi:10.1016/0889-4906(91)90015-o

The State of the Octoverse (Rep.). (2019). Github. doi:https://octoverse.github.com/

TIOBE Index for December 2018. (n.d.). Retrieved December 10, 2018, from

https://www.tiobe.com/tiobe-index/

Trace, J., Hudson, T., & Brown, J. D. (2015). Developing Courses in Language for Specific

Purposes. Hawaii: National Foreign Language Resource Center.

W3C Standards. (n.d.). Retrieved December 10, 2018, from https://www.w3.org/standards/

Zhang, Y., & Hu, J. (2010). A Genre-based Study of Medical Research Article Introductions:

A Contrastive Analysis Between Chinese and English. The Asian ESP Journal, 6(1),

72-96.

